Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells.
نویسندگان
چکیده
Fatty acid binding proteins (FABPs) are low-molecular-mass, soluble, intracellular lipid carriers. Previous studies on adipocytes from adipocyte fatty acid binding protein (A-FABP)-deficient mice have revealed that both basal and isoproterenol-stimulated lipolysis were markedly reduced (Coe et al. 1999. J. Lipid Res. 40: 967-972). Herein, we report the construction of transgenic mice overexpressing the FABP5 gene encoding the epithelial fatty acid binding protein (E-FABP) in adipocytes, thereby allowing evaluation of the effects on lipolysis of increased FABP levels and of type specificity. In adipocytes from FABP5 transgenic mice, the total FABP protein level in the adipocyte was increased to 150% as compared to the wild type due to a 10-fold increase in the level of E-FABP and an unanticipated 2-fold down-regulation of the A-FABP. There were no significant differences in body weight, serum FFA, or fat pad mass between wild-type and FABP5 transgenic mice. Importantly, both basal and hormone-stimulated lipolysis increased in adipocytes from the FABP5 transgenic animals. The molecular composition of the fatty acid pool from either the intracellular compartment or that effluxed from the adipocyte was unaltered. These results demonstrate that there is a positive relationship between lipolysis and the total level of FABP but not between lipolysis and a specific FABP type.
منابع مشابه
Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in dec...
متن کاملAdipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity
OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARDelta1 adipocytes. RESULTS aP2-desnutri...
متن کاملAdipose Overexpression of Desnutrin Promotes Fatty Acid Utilization and Attenuates Diet-induced Obesity
Objective: To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. Design: We generated transgenic mice overexpressing desnutrin in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1 adipocytes. Results: aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocy...
متن کاملMolecular adaptations of lipolysis to physical activity
The purpose of the present study was to investigate the context of lipid metabolism research in physical activity, lipolysis, lipolysis hormone regulation and the fate of lipolysis products in exercise, fatty acid transporters, some genes involved in lipid metabolism, effect of resistance activity on lipolysis, adaptations of adipose tissue due to physical activity, lipoproteins and apoproteins...
متن کاملTransgenic overexpression of hexose-6-phosphate dehydrogenase in adipose tissue causes local glucocorticoid amplification and lipolysis in male mice.
The prereceptor activation of glucocorticoid production in adipose tissue by NADPH-dependent 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has emerged as a potential mechanism in the pathogenesis of visceral obesity and metabolic syndrome. Hexose-6-phosphate dehydrogenase (H6PDH) is an endoplasmic reticulum lumen-resident enzyme that generates cofactor NADPH and thus mediates 11β-HSD1 acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 43 12 شماره
صفحات -
تاریخ انتشار 2002